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Abstract: Numerical models of structural components that deteriorate primarily due to geometric instabilities under multiaxis cyclic loading
are sensitive to both the assumed geometric imperfections and the nonlinear material model assumptions. Therefore, the accuracy of the
constitutive model is a desirable feature in finite-element simulations. However, the classic Voce-Chaboche metal plasticity model, ubiquitous
among commercial finite-element software, is found to underestimate the initial yield stress in structural steels by about 10%—-30% when
calibrated to minimize the overall difference in strain energy between the model and test data of load protocols representative of earthquake
loading. This paper proposes a refined version of the Voce-Chaboche material model. When compared with the original model, the updated
one improves the prediction of the initial yield stress, can simulate initial yield plateau behavior, and better estimates experimental cyclic
stress-strain data. Constraints on the model parameters are established, a calibration procedure is developed, and model parameters are
proposed for nine structural steels used worldwide. Source code for the material model is also made publicly available. A case study dem-
onstrates that steel component behavior is sensitive to subtle differences in the material response that arise between the Voce-Chaboche and
the proposed material models. DOI: 10.1061/(ASCE)ST.1943-541X.0002964. © 2021 American Society of Civil Engineers.
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inverse problem; Geometric instabilities.

Introduction

Experimental evaluation and accurate numerical modeling of struc-
tural components and systems are necessary for the field of earth-
quake engineering to evaluate component behavior under multiaxis
cyclic loading. In steel structures, which form the basis of this pa-
per, parametric full-scale physical experiments would often require
an inordinate amount of resources. Furthermore, the complex inter-
actions between nonlinear material behavior and the geometric
nonlinearities are challenging to study analytically. In contrast,
numerical modeling in the form of continuum finite-element (CFE)
analysis is a well-established alternative to investigate these prob-
lems in a so-called virtual testing environment (ATC 2017). A few
prevalent examples demonstrating the use of CFE analysis include
modeling braces and brace connections in concentrically braced
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frames (Fell et al. 2009; Hsiao et al. 2012), studying geometric in-
stability mechanisms in commonly used lateral load resisting sys-
tems (Imanpour et al. 2016), extending results from full-scale steel
wide-flange column tests to a wide range of column geometries and
loading conditions (Fogarty and El-Tawil 2016; Elkady and Lignos
2015, 2018b), and aiding the development of component modeling
guidelines in support of performance-based earthquake engineering
(Lignos et al. 2019).

Accurately simulating geometric instabilities and nonlinear
material behavior is essential in understanding the performance of
components subjected to seismic demands through CFE analysis.
At the crux of this issue is the choice of initial geometric imperfec-
tions to induce an appropriate geometrically nonlinear response, as
well as the choice of a material model that rigorously represents the
material behavior. Geometric imperfections are typically included by
superimposing scaled elastic buckling modes found through eigen-
value analysis, and the sensitivity of simulations to both the shape
and amplitude of the imperfections has been acknowledged (Schafer
et al. 2010; Kalochairetis and Gantes 201 1; Elkady and Lignos 2015,
2018b; Ziemian et al. 2018; Cravero et al. 2020). However, none of
these studies have investigated the sensitivity of steel component
simulations to the choice of material model and its parameters—this
paper works toward addressing these questions.

The employed material model should capture pertinent cyclic
loading effects, notably the Bauschinger effect, cyclic hardening,
and ratcheting (Sowerby et al. 1979; Cofie and Krawinkler 1985;
Hassan and Kyriakides 1992; Kaufmann et al. 2001). Cyclic soft-
ening is another effect observed in particular steels (Hassan and
Kyriakides 1992); however, this effect is not present in the mild
structural steels that are the focus of this research. Mild steels are
subsequently defined as steels that contain less than 0.3% carbon by
mass. The constitutive model combining the nonlinear isotropic hard-
ening law proposed by Voce (1948) to model cyclic hardening with
the nonlinear kinematic hardening law by Chaboche et al. (1979) to
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Fig. 1. Uniaxial 2% increasing strain amplitude cyclic coupon test on S355J2+N steel and its best-fit Voce-Chaboche model prediction:
(a) comparison of test and model responses; and (b) model error in initial cycles. (Experimental data from Grigoriou and Lignos 2017.)

model the Bauschinger effect and ratcheting, in this study referred
to as the Voce-Chaboche model, is ubiquitous among commercial
finite-element software.

In the context of earthquake loading, constitutive models for
mild structural steels should be able to closely replicate the materi-
al’s behavior regardless of the load history to account for the effect
of ground motion uncertainty on the structural response. de Castro
e Sousa et al. (2020) addressed this issue by calibrating the Voce-
Chaboche model using data sets of 5—10 uniaxial round-bar coupon
tests subjected to distinct cyclic strain histories deemed to be
representative of earthquake loading by Suzuki (2018). The reader
is directed to the study by de Castro e Sousa et al. (2020) for a
detailed discussion of alternative calibration methods. The calibra-
tion method of de Castro e Sousa et al. (2020) also reveals that there
is an inherent issue in the Voce-Chaboche model for the modeliza-
tion of mild structural steels in this context.

The issue in the Voce-Chaboche model for mild steels is related
to the discontinuous yielding phenomenon (Hall 1970; Lubliner
2008) and manifests itself in an underestimation of the initial yield
stress with the aforementioned methodology. de Castro e Sousa
et al. (2020) demonstrate that the overall difference in the accumu-
lated strain energy between the model and the test data is mini-
mized by sacrificing accuracy in the initial yield stress to better
predict the behavior in further plastic loading cycles. Their study
suggests that the model’s optimal initial yield stress underestimates
the experimentally measured yield stress by around 10%—-30% de-
pending on the data set considered, and the reason for this will be
discussed subsequently. Note that there is no discernible bias in the
underestimation based on the steels’ yield stress, manufacture prov-
enance, or chemical composition for the sets of structural steels
investigated by de Castro e Sousa et al. (2020). The underestima-
tion of the initial yield stress should be addressed in an effort to
investigate the sensitivity of steel components to the choice of
the material model and its input parameters.

The objective of this paper is to propose an updated Voce-
Chaboche (UVC) material model that better estimates the initial
yield stress for structural steels without reducing the fidelity in later
loading cycles. An improvement in the prediction of the yield stress
at the material level has implications for the extent of member
yielding and, subsequently, the simulated geometric instabilities
in components—both these aspects are demonstrated subsequently
in this paper through a case study. In turn, accurate predictions of
member buckling are important when simulating structures at limit
states in which such component deterioration is expected. A refined
isotropic hardening rule is proposed to achieve this goal, and con-
straints on the material model parameters that form the sufficient
condition to ensure instantaneous hardening of the material model
are established. These constraints are considered to be essential for
the proper use of the proposed material model for structural steels.
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A calibration procedure is also proposed that, in combination with
the parameter constraints, is general and agnostic with respect to
the material model, i.e., no further engineering heuristics are intro-
duced. Finally, we demonstrate that steel components subjected to
mulitaxis cyclic loading may be highly sensitive to the material
model assumptions. A case study utilizing a steel wide-flange col-
umn model under compressive axial load coupled with cyclic lat-
eral drift demands demonstrates that seemingly small changes in
the material model parameters can have a significant influence on
the simulation results.

Limitation of the Voce-Chaboche Model for Mild
Steels

The Voce-Chaboche material model underestimates the yield stress
in mild structural steels as a compromise to reduce the overall dif-
ference in accumulated strain energy between stress-strain data and
the model prediction for cyclic loading histories. This issue is illus-
trated using data from a cyclic uniaxial 2% increasing strain am-
plitude test on S355J2+N steel (CEN 2005b) with a nominal yield
stress of f, = 355 MPa [the experimental data is from Grigoriou
and Lignos (2017)]. Test data true stress-strain relations are shown
along with the best-fit Voce-Chaboche model prediction in Fig. 1(a).
Best-fit in the context of this paper is defined as the set of parameters
that minimizes the accumulated squared area, i.e., squared strain
energy, between the experiment and the model prediction. This error
is represented by the shaded region in Fig. 1(b) restricted on the first
few cycles of loading in Fig. 1(a). Notice that the initial yield stress
of the test data is underestimated by the model to match better the
stress-strain history in subsequent cycles, which tend to present a
lower elastic limit with smooth plastic hardening. Consequently,
the error is primarily focused on the first loading cycle due to the
mismatch of the yield stress. The observation that the initial yield
stress is greater than in ensuing cycles, seen in the light of J, plas-
ticity, implies that the size of the yield surface diminishes after initial
plastic straining.

The reduction in the elastic limit after the initiation of plastic
straining is attributed to interstitial carbon and nitrogen atoms in
the crystal lattice (Cottrell and Bilby 1949; Hall 1970; Lubliner
2008). These atoms concentrate in the tension field surrounding
dislocations, forming a so-called atmosphere, initially locking
the dislocations into place (Haidemenopoulos 2018). The yield pla-
teau is the strain range characterized by the growth of Luders bands
due to the successive stripping of dislocations from their atmos-
pheres as deformation progresses. A typical stress-strain response
for mild structural steels, including the plateau region, is shown
schematically in Fig. 2. The Luders strain, £;, denoting the end
of the yield plateau, is observed to be around 2% strain in mild
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Fig. 2. Schematic illustration of initial structural steel material re-
sponse to cyclic loading.
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Fig. 3. Schematic illustration of the yield surface progression for struc-
tural steels.

steels (Lemaitre and Chaboche 1990). No plateau is observed upon
further loading or immediate reloading once the accumulated plas-
tic strain is greater than the Luders strain. However, a secondary
upper yield point is observed if sufficient time is provided for
the reformation of atmospheres; this is known as the strain-aging
effect (Hall 1970; Lubliner 2008).

The solid load path in Fig. 2 represents immediate loading up to
the second excursion of the test depicted in Fig. 1(a). The dashed
loading path in this figure represents the expected behavior if the
test was unloaded for a period (on the order of days) then reloaded
in tension. Note that the secondary upper yield point formed after
aging exceeds the stress upon immediate reloading. Consideration
of the strain aging effect is potentially critical in studying main-
shock/after-shock problems in which the steel material has time
to age after the initial plastic straining; however, this subject is out-
side the scope of the present paper.

In Fig. 1(a), the difference between the initial plateau yield
stress, 0y, and the reduced yield stress upon immediate reloading
in compression, Jﬁ”, is highlighted. Progression of the size of the
yield surface, o, for mild steels undergoing the same loading path
is shown schematically in Fig. 3 with respect to the equivalent plas-

. . L . P .
tic strain, €%,. The initial decrease in size from €2, = [0, £ ] is
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intended to simulate the stripping of dislocations from their
atmospheres, the later increase after this range accounts for cyclic
hardening due to increasing dislocation densities (Lemaitre and
Chaboche 1990).

We propose a refined material model that accounts for the re-
duction in the size of the yield surface in mild structural steels by
modifying the Voce isotropic hardening rule. The isotropic harden-
ing rule used by Voce (1948) is defined in Eq. (1)

oy =0yt Qo1 — eXP[_bEe[;q]) (1)

where o, = initial yield stress; and O, and b are material param-
eters that define the magnitude and rate of isotropic hardening, re-
spectively. The Voce isotropic hardening rule is monotonically
increasing and cannot represent the sort of behavior shown in Fig. 3.
Therefore, parameters will be added to this isotropic hardening
rule that impose an initial decrease in the size of the yield surface.
The following section discusses the formulation of the proposed
material model, followed by its numerical implementation and
calibration.

Proposed Material Model

The proposed material model follows a classic small-strain, rate-
independent plasticity formulation (Simo and Hughes 1998).
Geometrically nonlinear problems should be addressed at the
material level through an objective integration algorithm, as de-
scribed by Simo and Hughes (1998); however, this discussion is
excluded in this study for brevity. Some notation used in this paper
is established for clarity before proceeding with the description of
the model.

Scalar quantities are not bolded (e.g., a). Bold, serif symbols are
first-order tensors (vectors) or second-order tensors (e.g., b), and
capitalized, bold symbols are fourth-order tensors (e.g., C). The
second-order identity tensor is 1, the fourth-order symmetric iden-
tity tensor is I, and the fourth-order deviatoric unit tensor is I4.,—
definitions for each are provided in the Notation. Contraction on
two indices is b:b =733 b;b;;; the tensor product is
b ® b = b;;by; the deviatoric part of a tensor is dev[b] =
I4e,:b; and the 2-norm is always used, i.e., ||b|| = v/b:b.

Constitutive Equations

This paper proposes an updated Voce-Chaboche model, denoted as
the UVC model. The UVC model uses an additive decomposition
of the strain tensor, €, defined in Eq. (2)

e=¢°+eP (2)

where €° = elastic strain tensor; and €” = plastic strain tensor. The
elastic stress-strain relation is provided in Eq. (3)

c=C:(e—¢€") (3)

where 6 = stress tensor; and C = isotropic tensor of elastic moduli.
A precise definition of C is provided in the Notation. The von
Mises yield condition is used in Eq. (4) for the yield function f

f = +/(dev[s] — dev[a]):(dev[s] — devla]) — \/2/30,
= lIél = v2/30, <0 (4)

where a = overall backstress; € = dev[o] — dev|e] is the deviatoric
relative stress; and o, = yield stress of the material. In accordance
with the principle of maximum plastic dissipation (Simo and Hughes
1998), the flow rule in Eq. (5) associated with J, plasticity is
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where the overdot indicates the time derivative; A\ = consistency
parameter (which is equivalent to the time derivative of the plastic
multiplier); and n = £/||€|| is the unit normal to the yield surface in
the deviatoric stress space. For the associative flow rule, the equiv-
alent plastic strain is defined by Eq. (6)

Armstrong and Frederick (1966) defined the nonlinear kinematic
hardening rule in Eq. (7) for a single backstress component k&

dk =/ 2/3Ck€fqn — ’ykéé’qak (7)

where C; and v, = parameters associated with the magnitude and
rate of backstress component k, respectively. Chaboche et al. (1979)
later proposed to use a summation of N, backstress terms as an im-
provement to the Armstrong-Frederick rule so that the overall back-
stress defined in Eq. (8) is

An (5)

N
a= Zak (8)
=1

‘We propose an update to the isotropic hardening rule to account
for the decrease in the initial yield stress for mild structural steels

0y = 040 + Qoo (1 — exp[—bezg]) — Doo(1 — exp[—acey])  (9)

where D, and a = material parameters that define the magnitude
and rate of the decrease in the initial yield stress. As previously
discussed, Eq. (9) is valid for immediate unloading/reloading of
the material. The novelty in the proposed model is that the addi-
tional term is able to account for the discontinuous yielding
phenomenon without leading to a loss of accuracy in later loading
cycles by initially reducing the yield surface. This behavior is ac-
complished through the modification to the isotropic hardening rule
and by imposing the proposed constraints on the parameters to en-
force nonsoftening behavior. Such a consideration is paramount
when calibrating the model using multiple load protocols in an ef-
fort to reduce uncertainty in the predicted material behavior when
subjected to random strain histories. Additionally, the term is in-
corporated in a smooth functional form without any discrete impo-
sition of loading stages. Note that the original Voce-Chaboche
model can be recovered by simply setting D, =0 and a # 0,
where a # 0 is required for numerical reasons in the algorithmic
implementation.

Numerous other models exist in the literature for modeling
mild structural steels; a nonexhaustive list includes studies by Ohno
(1982), Cofie and Krawinkler (1985), Yoshida and Uemori (2002),
Ucak and Tsopelas (2011), Mahan et al. (2011), Budahdzy and
Dunai (2013), and Hu et al. (2018). Most of the reviewed models
have a multisurface formulation and are not discussed further as
the simplicity of the algorithmic implementation for isotropic/
kinematic hardening is preferred. The model by Budahdzy and
Dunai (2013) has a multilinear isotropic hardening component
to simulate the upper yield stress and plateau and dynamically up-
dates the material parameters depending on the applied load for
uniaxial stress states; however, a single set of parameters for all
loading scenarios is preferred for its simplicity. The two nonlinear
isotropic/kinematic hardening models by Ucak and Tsopelas
(2011) and Hu et al. (2018) share common features with the UVC
model. Notably, both models include a term similar to the D, term
of the proposed model. The highlighted differences with the UVC
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Fig. 4. Schematic illustration of the radial return mapping algorithm.

model are that these two models consider distinct plateau and hard-
ening phases, the term similar to D, only provides cyclic softening
in the plateau region, and the constraints on the set of parameters
are not as general as those discussed subsequently in this paper
because parameter bounds are tied to particular steel material.

Numerical Implementation

The numerical implementation of the proposed material model
follows two parts: first, the solution of the consistency condition to
determine the stress for a given strain increment and, second, the
production of the consistent tangent moduli for use in an iterative
nonlinear finite-element analysis procedure.

Solution to the Consistency Condition

The return mapping (implicit backward-Euler) time integration al-
gorithm is implemented to provide the stress for given strain states
(Simo and Hughes 1998). Notions of plastic loading and elastic
unloading are represented by the Karush-Kuhn-Tucker comple-
mentary conditions in Eq. (10)

A0, <0, A =0 (10)

These conditions establish the elastic-predictor-plastic-corrector
methodology, whereby if the assumed elastic trial state violates
the yield condition, then plastic loading is active. The algorithm
is implemented as a strain driven problem (Simo and Hughes
1998), i.e., let £ € [0, 7y, ..., T] C R be the discretized time inter-
val of interest. At time ¢,, we assume that the total strain, plastic
strain, and internal variables are known. If plastic loading is acti-
vated, the objective is to solve for the increment in the plastic multi-
plier, A\ = f ;:*‘)\dt, that constrains the stress state to the yield
surface.

Fig. 4 illustrates the algorithmic counterpart to the consistency
condition that arises for multiaxial stress states with a von Mises
yield potential in the 7-plane (i.e., radial return mapping). Satisfy-
ing this condition for A\ is equivalent to finding the orthogonal
projection of the trial stress state onto the hardened yield surface
(Simo and Hughes 1998). In this figure, s™#! is the deviatoric trial
stress at the start of a particular increment, n: Ae is the increment in
kinematic hardening, \/2/30, is the equivalent yield stress, and
2u AN is the reduction in the magnitude of the trial stress to account
for the increment in the plastic strain in accordance with Eq. (3).
The radial return mapping algorithm balances all these components
by solving for A\ at each time increment.
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Starting at time 7, Eq. (11) represents the algorithmic consis-
tency condition to be solved at time increment ¢,

. 2
g(A)\) = H ;nﬁllu - (\/7 Oyn+l +2/~‘A)‘+nn+l Aa) =0
(11)

where Aa = a,, | —a,. The consistency condition for the time
step 1, is solved through iterations over i using Newton’s local
method (Bierlaire 2015)

(i)
AN = Ax0) - IEAT) (12)
Dg(ANY)
where the linearization of Eq. (11) is provided in Eq. (13)
Ag(AN) H'  +K)
Dg(AN) = =2 14—l 13
9(AN) =5 pl 1+ 3 (13)

The kinematic and isotropic hardening moduli for multiaxial
loading are respectively defined by Eqs. (14) and (15)

n+l - Ckekn+l \/7 n+l Z 7k€kn+lakn (14)

n+l - QOOb exp[ b eq, n+1] Dooaexp[_aegq,n+l] (15)
where

Crn+l = eXp[—%(Efq.Hl — €eqan)] (16)

For multiaxial loading, Eq. (12) is iterated until a tolerance of
|g(AN)| < 10710 is satisfied. Full details of the radial return map-
ping procedure, along with efficient algorithms for uniaxial, multi-
axial, and plane-stress, are provided in the study by Hartloper
et al. (2019).

Consistent Tangent Moduli

The elastoplastic tangent moduli consistent with the return map-
ping algorithm (Simo and Hughes 1998) are now provided for the
case of plastic loading. For brevity, only the final result is shown,
and details of the derivation can be found in the study by Hartloper
et al. (2019). The consistent elastoplastic tangent moduli are de-
fined by the fourth-order tensor C;”, in Eq. (17)

1
Cli=rk1®1) +2u01<1 —§1 ® 1>

—2uby () @ ypy) +2p03(n, 1y ® Aa)  (17)

where
=g 6 (5 -0
o = ST ()
and
5:1+K/%MH"+‘ (19)

A symmetric approximation of the tangent moduli is used be-
cause the last term in Eq. (17) is asymmetric, and therefore
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C;P'm.,nJrl = ((Cn+1) +C,iljr|) (20)

Hopperstad and Remseth (1995) show that using a symmetric
approximation preserves the quadratic convergence of the global
Newton solution procedure. This result suggests that the symmetric
approximation leads to an overall reduction in both computer
memory use and the number of computations required because
symmetric matrix storage and solvers can be employed.

Validation

The proposed material model is implemented in the nonlinear
finite-element software ABAQUS (2014) and the Open System
for Earthquake Engineering Simulation (OpenSees version 3.2.0)
(McKenna 1997) for multiaxial, plane-stress, and uniaxial stress
states. User subroutine files (UMATS) for Abaqus and C++ source
code with compiled dynamic link libraries (.dlls) for OpenSees are
made publicly available (Hartloper 2019). The implementations
are validated by comparing the response of several finite-element
models using the UMAT and NDMaterial with equivalent models
using the built-in nonlinear isotropic/kinematic model in Abaqus
version 6.14 (ABAQUS 2014). In all these validation cases, the
updated isotropic hardening rule of the proposed material model
is neglected by simply setting D, = 0 and a = 1 (the choice of
a = 1 is made for simplicity as long as a # 0). Material properties
representative of an ASTM A992 (ASTM 2015) Gr. 50 steel
(nominal f, =345 MPa) are assumed for all analyses: E =
179,800 MPa, v=0.3, o, = 318.5 MPa, O, = 100.7 MPa, b =
8.0, D, = 0.0 MPa, a = 1.0, C; = 11,608.2 MPa, v, = 145.2,
C,=1,026.3 MPa, and 7, =4.7. Only two cases are provided
in this paper for brevity, but several more validations are pro-
vided in the study by Hartloper et al. (2019).

A unit cube model subjected to biaxial loading demonstrates
that the material model implementation is accurate when compared
with the built-in Abaqus v6.14 material model. Unit cube models
consisting of a single fully-integrated brick element (Abaqus:
C3DS8; OpenSees: SSPbrick) are subjected to two biaxial stress
states in Abaqus and OpenSees. Results from both the implemented
multiaxial UMAT [UVC.MA (UMAT)] and the implemented mul-
tiaxial NDMaterial [UVC.MA (NDM)] are compared with the re-
sults from the built-in nonlinear isotropic/kinematic model in
Abaqus v6.14 (ABAQUS). Comparisons of the results are shown
in Figs. 5(a and b). Both implementations agree with the built-in
Abaqus results to the level of machine precision, highlighting the
accuracy of the implemented radial return mapping procedure and
the consistency of the tangent moduli with the material response.

The material model implementations are also accurate and
efficient for component level simulations. The plane stress imple-
mentation is validated by modeling a cantilever column using
shell elements (S4R) in Abaqus. The column cross-section is a
W360X122 (W14X82 in US customary units), a constant compres-
sive axial load equal to 20% of the axial yield strength is applied,
and the symmetric cyclic load protocol from Chapter K of AISC
(2016) is applied at the column top. The column model is devel-
oped according to the recommendations by Elkady and Lignos
(2018b). For further details on the modeling procedure, loading,
and boundary conditions, see the study by Hartloper et al. (2019).
Fig. 6 shows that there is a negligible difference in the moment-
rotation between the models using the built-in material (ABAQUS)
and the implemented material [UVC.PS (UMAT)]. These differen-
ces are attributed to accumulated errors that arise from a difference
in the number of required iterations between the two models (UVC.
PS UMAT: 4231; ABAQUS: 8583). The model run using the UVC.
PS UMAT requires approximately 50% fewer iterations than the
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Fig. 5. Results from the material model unit cube validation studies: (a) Abaqus UMAT validation; and (b) OpenSees NDMaterial validation.
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Fig. 6. Results from the material model column validation study.

one using the built-in material model, likely because large plastic
strain increments can be converged by the implemented UMAT,
whereas the built-in material model reduces the time step to achieve
convergence. In relation to the preceding discussion, the imple-
mented UMAT is more efficient than the built-in Abaqus v6.14
material model in this case.

Constraints on the Parameter Space to Ensure
Nonsoftening

Constraints on the parameter space are necessary because an incor-
rect choice of parameters for the proposed material model may
violate the instantaneous strain-hardening behavior of mild steel
materials. Establishing a nonnegative tangent modulus for all plas-
tic strain values, e.g., perfectly-plastic or strain-hardening materi-
als, is used as the starting point for the derivations in this section.
This condition is first developed for uniaxial stress states. After-
ward, this condition is shown to enforce the uniqueness of the elas-
toplastic boundary value problem for all stress states.

Uniaxial Loading
The algorithmic tangent modulus for a uniaxial stress state is given
in Eq. (21) (Simo and Hughes 1998)

er  E(Ky+H,)

=2t e

where E = elastic modulus; and the kinematic and isotropic hard-
ening moduli are respectively defined for uniaxial loading by

ep
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Fig. 7. Tangent modulus of the proposed material model subjected to
monotonic and cyclic loading histories.

If K], + H}, > 0, the tangent modulus in Eq. (21) is nonnegative
because E is a positive parameter. Therefore, we just seek to impose
the condition K, + H,, > 0 as the case —(K, + H,) > E is ignored
because we desire a nonsoftening response.

The value of K, + H), may be less than zero if the D, and a
parameters in the isotropic hardening are not properly chosen.
Ensuring C;” > 0 is further complicated by the path-dependency
of the kinematic hardening term. A key result used to resolve the
path-dependency is that the least tangent modulus is found if the
strain is monotonically increasing in tension or compression. This
fact is shown in Fig. 7 that illustrates the tangent modulus for mon-
otonic tensile (solid line) and cyclic tension/compression loading
histories (dashed line) using Eq. (21). The peaks and plateaus in
the tangent modulus of the cyclic loading history shown in this fig-
ure correspond to elastic unloading/reloading. In turn, the plateaus
are followed by a gradual decrease in the value of C;/ to the limit of
monotonic loading with further plastic straining. From Eq. (7), the
monotonic tensile loading provides the lower-bound tangent modu-
lus at all points because reversal in the loading direction decreases
the value of «, thereby increasing the value of H} in Eq. (22). It
follows that the material is nonsoftening under uniaxial loading for
all strain histories if the minimum of the monotonic tangent modu-
lus is restricted to be always nonnegative.

Monotonic tensile/compressive loading from an initial state of
zero plastic strain is used as a starting point to develop the param-
eter constraints. Under these two assumptions, the uniaxial kin-
ematic hardening modulus is defined by Eq. (24)

Egs. (22) and (23) H i mono = ;(Ck exp[—mieeq)) (24)
H} = 37(C, — signlo — alyay) (22)

k while the isotropic hardening modulus is unaffected by this

assumption. Replacing Eq. (22) with Eq. (24) in Eq. (21), the con-

K} = Qubexp|—bel,| — Do aexp[—acly] (23) straint that defines nonsoftening behavior is provided in Eq. (25)
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§=Docaexp|—azly]— Qs bexp[—bely] = (Crexp[—yiely]) <O
k
(25)

This constraint implies that the gain in the tangent modulus from
isotropic and kinematic hardening outweighs the loss from the
D, term.

Constraint § defined in Eq. (25) is still challenging to impose
due to its dependency on &%,. Two relatively simple constraints that
do not depend on &, are developed through an additional
assumption that a > b is placed on the isotropic hardening rate
parameters. The assumption a > b implies that the reduction in
the yield surface associated with the D, term occurs faster than
the increase in the yield surface due to cyclic hardening associated
with Q. This realization is supported by tests on mild steel cou-
pons and is implied by the behavior shown in Fig. 3. The relation
a > b is not directly imposed as a constraint to keep the UVC
model for more general applications (e.g., for materials exhibiting
cyclic softening); however, the calibration results, shown sub-
sequently, verify this assumption. The two constraints are now pre-
sented, and afterward, they are proven to provide a nonsoftening
response regardless of the applied loading.

Constraints proposed in Eqs. (26) and (27) are sufficient to en-
sure hardening of the material for all feasible strain histories

91 =8ls 0= —0xb—> (Ci) +Dsea <0 (26)
k

09
Oeb,

qlel,=0

9 =

= Qb+ Y (Cim) —Da® <0 (27)
k

Note that the constraints g, and g, are defined in their standard
form (i.e., g <0) to be compatible with standard optimization
algorithms in anticipation of the calibration procedure to follow.
Constraint g, ensures that C;” > 0 when &2, = 0, and constraint
g» ensures that 9C;”/0eb, > 0 when &b, = 0. These constraints
are interpreted to mean that g; ensures that the initial tangent modu-
lus is nonnegative, and ¢, ensures that the tangent modulus is ini-
tially increasing.

A rigorous evaluation of g; and g, follows two arguments based
on the relationship between the magnitude of the rate parameter a
to the rate parameters ;. In what follows, a > b is always assumed
to reduce the number of possible minima to Cy” (Hartloper et al.
2019). The first argument is based on the assumption that
a> maxryk. In this case, it can be shown that there is one root
to C;”, and it is a local maximum of Eq. (21) (Hartloper et al.
2019). Therefore, the minimum of Cy” occurs as 2, — oco; how-
ever, because C;¥ — 0 as sé’q — 00, the tangent modulus is always
nonnegative. Accordingly, if C;” > 0 when &2, = 0, the material is
always nonsoftening when a > max-y,.

The second argument is based on the assumption that
a <maxvy,. In this case, there are either zero or two roots to
C.’ (Hartloper et al. 2019). For zero roots, C;’ >0 for all
aﬁ’q > 0. For two roots, it can be shown that the minimum occurs
at a plastic strain less than the maximum, i.e., €, iy < €,.max> Where
G, takes the local minimum and maximum values at &,
and €, . respectively. The minimum is avoided for physically
permissible values of £5, if the slope of the tangent modulus,
IC;P | deby, is initially greater than zero. This result follows from
Eq. (6) because £b, > 0 by definition. Therefore, if C;” > 0 and
dC;? |9ty > 0 when e, = 0, the material is always hardening
when a < max~;.
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The preceding arguments prove that constraints g; and g, ensure
nonsoftening for monotonic uniaxial loading. Because monotonic
loading gives the lower-bound of C;”, we conclude that these con-
straints ensure nonsoftening for all uniaxial load histories. The
specification of these two constraints is only possible if the param-
eters D, and a are added to the original Voce-Chaboche model;
otherwise, more than two roots to dC;”/del, may exist. Con-
straints g; and g, will subsequently be used in the identification
of material parameters based on uniaxial coupon tests.

Multiaxial Loading

Uniaxial results are extended for multiaxial loading based on the
classical uniqueness of the elastoplastic initial boundary value
problem. The condition for uniqueness in Eq. (28) is that the
second-order work density is nonnegative (Simo and Hughes 1998)

66 =¢C:e>0 (28)

where C¢” = fourth-order tensor of continuum elastoplastic tangent
moduli. The uniaxial interpretation of Eq. (28) to be true for all
strain histories is that C;;” > 0 (i.e., nonsoftening), and for multi-
axial loading, the tensor of elastoplastic tangent moduli is positive
semidefinite. We now make use of the property that positive semi-
definite matrices have nonnegative eigenvalues to show that
Eq. (28) is satisfied for multiaxial loading.

Neilsen and Schreyer (1993) provide two key results. First, the
minimum eigenvalue of C¢” does not depend on the direction of
loading for a von Mises yield condition and an associative flow
rule. Second, that the sign of the minimum eigenvalue of C¢” is
equal to the sign of the combined hardening modulus (i.e., the
sum of kinematic and isotropic moduli). Therefore, K, + H, >
0 implies that C¢” is positive semidefinite for the proposed material
model because the minimum eigenvalue is nonnegative. Therefore,
nonsoftening in the uniaxial stress state enforced by the constraints
defined in Egs. (26) and (27) also enforces the uniqueness condi-
tion in Eq. (28) for multiaxial loading.

Calibration of Material Model Parameters

Methodology

Model parameters are ideally calibrated from several markedly dif-
ferent load protocols for material models to be representative of a
material response under random strain histories. The inverse prob-
lem of determining the model parameters is stated as a constrained
minimization in which the objective is to minimize the difference
between the material model prediction and the test data, and the
constraints impose that the material model is at no point softening.
A gradient-based optimization approach using algorithmic differ-
entiation is found to be most effective for similar problems (de
Castro e Sousa et al. 2020); therefore, a similar strategy is utilized
in this study.

The minimization problem to be solved is defined in Eq. (29)

minimize f(x) (29a)
xeR?

subjectto  g(x) <0 (29b)

where x = [E, 0y0r Qs 0. Do, a, Cy, 7y, .. CNk,nyk] is the vec-
tor of n parameters for the UVC model under uniaxial loading;
f(x):R" — R is the objective function; and g(x):R" — R™ is a
vector-valued function of constraints (i.e., there are m constraints
defined). The goal of the proposed calibration procedure is to find
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the set of material parameters x that is a local minimum of the ob-
jective function and satisfy the nonsoftening constraints.

The objective function defined in Eq. (30) is in keeping with the
definition by de Castro e Sousa et al. (2020)

T fE/ (o_;nodel(gj;x) _ U;;st)Zde*

& o
x) = -
2 e

where N7 load histories are considered; o''°%!(e;; x) = stress from
the UVC model given strain history ¢; and parameters x; o'/ =
stress recorded in the uniaxial test j; and £* = accumulated strain

t:
e = / l&;ldr (31)
0

(30)

The objective function f(x) represents the total squared-area be-
tween the model prediction and test data normalized by the total
accumulated strain for several tests [see the shaded region in
Fig. 1(b) for a single test]. Constraints to impose nonsoftening are
considered for the proposed model, g(x) = [g;, g], defined by
Egs. (26) and (27). The parameter space is further limited to x > 0
to obtain physically meaningful results and to ensure convergence
of the return mapping algorithm.

Eq. (29a) is solved in multiple steps because it is challenging to
obtain a solution due to the nonlinearity of the constraints and the
indefiniteness of the Hessian of f(x) (de Castro e Sousa et al.
2020). Numerical testing reveals that solving the problem of
Eq. (29a) subjected to Eq. (29b) directly is not practical and that
the solution time can be significantly reduced by using an appro-
priate starting point (Hartloper et al. 2019). The first step is to solve
Eq. (29a) using the Voce-Chaboche model (i.e., without D, and a)
following the methodology by de Castro e Sousa et al. (2020). The
starting point to the Voce-Chaboche model is chosen as a perfectly
plastic material with nominal elastic modulus and initial yield
stress. All hardening parameters are initially set to 107! to represent
the perfectly plastic conditions. Once the solution point using the
Voce-Chaboche model has been found, the added parameters that
constitute the UVC model are set to D, = 10! and @ = 200, and
this point is denoted as x;,;. The choice of a is made on the ob-
servation that the Luders strain is typically around a 2% strain
for mild steels, corresponding to a ~ 230 for a 99% saturation
of D,

The second step is to solve Eq. (29a) subjected to Eq. (29b) with
the UVC model starting from x;,; using the nonlinear interior-point
trust-region optimizer (NITRO) algorithm described by Byrd et al.
(1999) and implemented in the Python package Scipy (Jones et al.
2001). The NITRO algorithm is found to be the most efficient when
compared to the alternative constrained trust-region (Conn et al.
2000; Bierlaire 2015) and sequential quadratic programming meth-
ods (Bierlaire 2015). An additional benefit of this algorithm is that
solution points can be found starting from infeasible starting points.
Solution points are defined by the local minima of the objective
function. Minima are defined by the first-order necessary condition

VIl < € (32)

and the second-order necessary condition that the Hessian of f(x)
is positive definite. The symbol V(-) in Eq. (32) is the gradient
operator, and the tolerance is initially defined as ¢,; = 1073, Even
starting from x;,;, obtaining a solution to Eq. (29) to 107% is
challenging due to the aforementioned nonconvexity of the objec-
tive function and nonlinearity of the constraints. Experience shows
that satisfactory solutions can be found by successively relaxing the
tolerance from 1073 to 1072 after 300 iterations and then finally to
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5 x 1072 after a further 1,000 iterations. The aforementioned cal-
ibration procedure is implemented in the open-source Python pack-
age RESSPyLab (de Castro e Sousa et al. 2019).

Summary of Results for Structural Steel Materials

Definition of Metrics

Metrics are defined to quantify the model fit and hardening char-
acteristics of each steel material. The quality of fit is defined by the
® metric in Eq. (33) that represents the model error normalized
by the total squared-area under all the stress-strain curves in the
data set

p= s < (X0 W )d) (3)

= fo de*

A value of ¢ = 0 indicates a perfect fit, and increasing values
indicate decreasing qualities of fit.

The following metrics are defined in terms of the equivalent
plastic strain assuming monotonic loading for a fixed set of param-
eters. The total increase in stress due to hardening is described by
the metric in Eq. (34)

Thard(€6q) = Qoo (1 — exp[—bety]) + ch/’Yk(l — exp[—viecq))
k

(34)

The ratios of isotropic and kinematic contributions to the total hard-
ening are respectively defined by the metrics in Eqs. (35) and (36)

Qoo (1 — exp[—becy])

plSO( ) Chard (Eé)q) (35)
pkm(geq) chk/FYk(l - exp[ kggq]) (36)
Ohard (594)

A value of p, =1 (pio = 0) indicates that there is only kin-
ematic hardening present in the material. The total stress at a par-
ticular value of &2, is defined by Eq. (37)

Doo(1 —exp[—ageq])  (37)

and the ratio of stress at saturation to the initial yield stress is given
in Eq. (38)

Tiotal (qu) = UyA,O + Uhard(sgq)

Utotal(Eeq) (38)

Pyicia(€bq) =
yie eq 030

Avalue of pyicjq = 2 would indicate that the stress at the chosen
value of 65,1 is twice the initial yield stress.

All the preceding metrics can be evaluated at any particular €2,
value. The choice of saturation (i.e., sﬁ’q — 00), indicated by the
“sat” superscript, is made for convenience and to compare with
de Castro e Sousa et al. (2020). However, the choice of gfgq ~
0.15 could be more representative of the ultimate material behavior.

Results and Discussion

Parameters for the UVC model based on 12 sets of coupon tests on
mild structural steels from Europe, North America, and Japan are
provided and evaluated in this section. Nine steel materials are in-
cluded in this database. These steels can be classified as either car-
bon structural steels (e.g., S355J2+N, A992 Gr. 50, A500 Gr. B,
BCP325, and BCR295) or high-strength low-alloy structural steels
(e.g., S460NL and S690QL), according to ASTM (2018). The high
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Table 1. Summary of steel material database and metrics for the proposed material model

1D Material Sy (MPa) Reference LP o (%) o (MPa) o | (MPa) p;‘i‘;ld o Jo
1 S355J2+N 50 mm plate 355 1 1-10 6.33 701.93 462.91 2.11 0.26 0.74
2 S355J2+N 25 mm plate 355 1 1-10 6.53 681.02 475.97 2.01 0.28 0.72
3 S355J2 HEBS500 flange 355 3 1,2,5,6,9 3.96 636.59 417.72 2.02 0.33 0.67
4 S355J2 HEB500 web 355 3 1,1-3,5-9 5.65 548.55 333.94 1.64 0.42 0.58
5 S460NL 25 mm plate 460 1 1,3-7,9,10 5.46 818.32 515.76 1.86 0.19 0.81
6 S690QL 25 mm plate 690 1 1,3-7,9,10 6.20 896.50 343.41 1.31 0.00 1.00
7 A992 Gr.50 W14X82 web 345 2 1,2,5,6,9 5.21 643.27 407.93 1.70 0.30 0.70
8 A992 Gr.50 W14X82 flange 345 2 1,2,5,6,9 4.76 786.49 548.72 2.10 0.26 0.74
9 A500 Gr.B HSS305X16 315 2 1,2,5,6,9 4.99 832.57 558.90 2.57 0.41 0.59
10 BCP325 22 mm plate 325 2 1,2,5,6,9 3.89 662.04 399.96 1.80 0.28 0.72
11 BCR295 HSS350X22 295 2 1,2,5,6,9 5.21 996.09 687.18 2.42 0.00 1.00
12 HYP400 27 mm plate 400 2 1,2,5,6,9 4.67 797.99 452.81 1.76 0.14 0.86

Note: Steels 1-6 are European, 7-9 are North American, and 10-12 are Japanese; HSS = hollow structural section; f, , = nominal yield stress; and LP = load
protocols tested. See de Castro e Sousa et al. (2020) for definitions. Reference 1 refers to the study by Grigoriou and Lignos (2017), Reference 2 refers to that
by Suzuki (2018), and Reference 3 was conducted as a part of this study.

Table 2. Proposed material model parameters for structural steels

D E (GPa) 40 (MPa) 0., (MPa) b D, (MPa) a C, (MPa) - C, (MPa) 7s
1 185.97 332.18 120.48 8.14 93.15 261.75 21,102.00 173.60 2,300.60 10.42
2 197.41 338.80 134.34 14.71 133.75 229.25 26,242.00 199.04 2,445.30 11.66
3 192.13 315.04 138.01 11.36 96.16 223.66 18,587.84 257.31 1,351.98 6.52
4 199.68 334.94 139.32 14.07 120.33 274.73 28,528.03 315.17 2,569.45 24.68
5 187.61 439.20 97.35 14.02 136.64 226.40 26,691.00 188.75 2,892.40 10.44
6 188.63 685.39 0.11 0.11 132.30 285.15 34,575.00 185.16 3,154.20 20.14
7 210.74 378.83 122.63 19.74 143.49 248.14 31,638.00 277.32 1,548.60 9.04
8 191.02 373.72 141.47 15.20 135.95 211.16 25,621.00 235.12 942.18 3.16
9 191.21 324.09 228.02 0.11 50.41 270.40 17,707.00 207.18 1,526.20 6.22
10 178.61 368.03 112.25 10.78 105.95 221.92 20,104.00 200.43 2,203.00 11.76
11 178.74 41221 0.09 0.09 103.30 212.83 20,750.59 225.26 1,245.04 2.09
12 189.36 454.46 62.63 16.57 109.28 145.74 13,860.00 141.61 1,031.10 3.53

Note: ID column corresponds to Table 1.

yield point (HYP) steel is a mild steel for structural applications in
which the yield stress is enhanced through a thermomechanical
control process and grain refinement (Suzuki et al. 2008; Kanno
2016; Suzuki 2018). The steel material type, nominal yield stress,
load protocols used for calibration, and evaluation metrics for all
the data sets are summarized in Table 1. Up to 10 different strain-
based load protocols deemed to be representative of strain histories
in steel components subjected to earthquake loading are utilized for
each material based on the suggestion by Suzuki (2018). Defini-
tions for the load protocols are found in the study by de Castro
e Sousa et al. (2020).

Parameters for the 12 data sets are provided in Table 2; note that
the identification (ID) number for all the steel materials in this table
are in correspondence with Table 1. Table 3 collects the yield stress
measured using the 0.2% offset method for each dataset (averaged
over all tests in each set), along with the o, ; values and error metric
values @ for the Voce-Chaboche and UVC models. This table
shows that the UVC o, is only 4% different from the average mea-
sured yield stress, while the Voce-Chaboche o, is 17% different
from the average measured yield stress. A 4% difference in the ini-
tial yield stress is notably accurate, especially considering the dis-
continuous nature of the stress in the plateau region measured by
the 0.2% offset method. Furthermore, the UVC model leads to a
relative reduction in the normalized error metric by about 20%
on average compared to the Voce-Chaboche model.

The proposed UVC material model provides a better fit of the
test data and a better estimation of the initial yield stress and also
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better approximates the initial plateau found in mild carbon steels
when compared with the Voce-Chaboche model. Several key points
are now highlighted using the Voce-Chaboche model parameters
from 10 of the same data sets in the study by de Castro e Sousa
et al. (2020) as a basis for comparison. The goodness-of-fit for
all the load histories considered is shown in Figs. 8 and 9 for data
sets from the flange and web of an HEB500 section that were tested
as a part of the current study (IDs 3 and 4 in Table 1). In each of
these figures, VC is the Voce-Chaboche model prediction. Results
from two data sets are shown in this study for brevity, but compar-
isons of the remaining data sets are provided in the study by
Hartloper et al. (2019). Although differences between the original
and updated models may seem entirely insignificant, in all these
figures, notice that the plateau yield stress is closely predicted
by the updated material model, whereas the same is not true for
the original model. A case study subsequently demonstrates that
there is a significant impact on the prediction of wide-flange col-
umn postpeak behavior despite the closeness between the two
material predictions.

Values of the ratio of isotropic-to-total hardening, pi, in Table 1
show that mild carbon structural steels have a higher ratio of iso-
tropic hardening than the high-strength low-alloy steels. The pi
metric is around 25%-40% for the mild carbon structural steels
(e.g., S355J2+N, A992 Gr. 50) and is negligible for high-strength
steels (e.g., pi& = 0 for S690QL). One exception to this obser-
vation is the BCR295 data set that does not exhibit cyclic hard-
ening because the coupons were sampled from the corners of a
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Table 3. Comparison of yield stresses and normalized error metrics for the UVC and Voce-Chaboche (VC) models

ID fyma (MPa) a;{gc (MPa) ayY_g (MPa) Error, f, UVC (%) Error, f, VC (%) PUVE (%) V¢ (%) Error, & (%)
1 339 332 271 2 18 6.33 6.37 -1
2 358 339 265 5 22 6.53 6.70 -3
3 305 315 246 3 22 3.96 4.63 —14
4 350 335 252 4 25 5.65 6.16 -8
5 446 439 359 1 18 5.46 6.32 —14
6 714 685 603 4 12 6.20 7.95 -22
7 386 379 339 2 10 5.21 7.01 —26
8 393 374 318 5 15 4.76 7.31 -35
9 343 324 301 6 7 4.99 6.86 —27
10 380 368 306 3 17 3.89 5.05 -23
11 392 412 346 5 16 5.21 8.38 —38
12 463 454 376 2 17 4.67 5.31 —-12
Average — — — 4 17 — — -19
Note: fy,, = average yield stress for each data set; aKg and @ are taken from the study by de Castro e Sousa et al. (2020); Error,

FyUVC = [0%8C = fumal/ Fymas Brror, £, VC =10V = fymal/fymas> and Error, @ = (pVV€ —V€)/@vC.
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Fig. 8. Comparison of test data and model predictions for the S355J2 HEB500 flange data set: (a) LP 1; (b) LP 2; (c) LP 5; (d) LP 6; and (e) LP 9.

cold-pressed hollow structural section. Recalling that isotropic
hardening is a reflection of the amount of cyclic hardening exhib-
ited by the physical material, these results suggest that high-strength
steels do not exhibit much cyclic hardening. This finding is in agree-
ment with that of de Castro e Sousa et al. (2020) for the original
Voce-Chaboche model and is visually confirmed by the plots of
stress-strain data for the S690QL steel (Hartloper et al. 2019).
Comparing the UVC and Voce-Chaboche models, there is a
larger portion of isotropic hardening in the updated model, and the
total stress at saturation is similar. The value of p{2! varies between
20% and 25% for S355J2+N and A992 Gr. 50 steels in the study
by de Castro e Sousa et al. (2020) for the Voce-Chaboche model.
Ratios of isotropic-to-kinematic hardening tend to be higher in the
UVC model because Q, is increased to compensate for the neg-
ative effect of D,,. Comparing o2, from Table 1 with their equiv-
alent values in the study by de Castro e Sousa et al. (2020), there is
an average of a 1% difference between the two models across all the
comparable material data sets. These two results suggest that
although the composition of total hardening is different between
the two models, the ultimate stress at saturation is comparable.
A reduction in the yield surface is observed in all of the evalu-
ated materials, and the magnitude of O, seems to be roughly equal
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to that of D, for the carbon steels (apart from BCR295 due to cold
working). Isotropic hardening parameter Q. is greater than D, in
7 out of the 12 data sets for the updated material model. These re-
sults imply that the decrease in the yield surface due to discontinu-
ous yielding is roughly balanced by the increase due to cyclic
hardening. The magnitude of D, is itself significant for all the data
sets, indicating that there is some reduction in the yield surface even
in high strength steels, e.g., S690QL steel. Although this material
does not visually exhibit discontinuous yielding or cyclic hardening
(i.e., O ~ 0), the fact that D, > 0 suggests that interstitial impu-
rities may still play a role in restricting dislocation movement that
diminishes with increasing accumulated plastic strain. Applications
of the proposed material model to other steels that contain a reduc-
tion in the yield surface, e.g., due to cyclic softening, is left for
future investigations.

Note on the Number of Backstresses

At least two backstresses are necessary to adequately model the
kinematic hardening observed in mild steels using the UVC model.
One backstress is found to be insufficient to represent the kinematic
hardening, leading to irrational estimates of other parameters
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Fig. 9. Comparison of test data and model predictions for the S355J2 HEB500 web data set: (a) LP 1; (b) LP 2; (c) LP 3; (d) LP 5; (e) LP 6; (f) LP 7,

(g) LP 8; and (h) LP 9.

(Hartloper et al. 2019). There is little improvement in @ when three
backstresses are used, echoing the results from de Castro e Sousa
et al. (2020) for the original Voce-Chaboche model. Therefore,
two backstresses provide an optimal mix of accuracy and efficiency
while adequately representing the kinematic hardening observed in
the test data.

Finite-Element Analysis Case Study and
Implications

The sensitivity of CFE models to their initial material model as-
sumptions is explored in this section through a parametric study.
The evaluation is established by comparing the response of two-
column models with identical geometric characteristics: one using
the Voce-Chaboche model and the other with the UVC model.
Variations in the material model parameters, as well as the imperfec-
tions, are considered in this study to conclude whether the differences

Table 4. Cross-section properties of an HEB500, 7,000 mm length

Properties Values
A (mm?) 23,900
h (mm) 500
b (mm) 300
t,, (mm) 14.5
t; (mm) 28
h/t, 26.9
b/2ts 5.4
L,/i, 72.7
Ar 1.0
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in the observed behavior consistently arise between simulations car-
ried out with the two material models.

The parametric study focuses on the simulated performance of
an HEB500 cross-section (similar to a W610X217, or W24X146 in
North America) of a 7,000-mm length subjected to multiaxis load-
ing. Relevant geometric characteristics of this column are provided
in Table 4. In this table, A is the cross-sectional area, & is the section
depth, b is the flange width, 7, is the web thickness, 7, is the flange
thickness, /1, is the clear distance between flanges, L, is the column
unbraced length, 7, is the radius of gyration in the weak axis, and
.7 is the lateral-torsional buckling slenderness calculated accord-
ing to Eurocode (CEN 2005a). This cross-section satisfies the
Eurocode Class 1 criteria for the applied compression and bending
(CEN 2005a) and the AISC highly ductile classification criteria
(AISC 2016). However, the column has relatively large member
slenderness, indicated by its L,/i, value, and is susceptible to
lateral-torsional buckling (LTB) coupled with plastic local buckling
because Eurocode indicates that inelastic LTB should occur
when 0.4 < X\ 7 < 1.2

Modeling Procedure

Column models for the HEB500 column are developed following
the guidelines by Elkady and Lignos (2018b) using the software
Abaqus v6.14 (ABAQUS 2014). The adequacy of these guidelines
for similar cross-sections has been established through validations
with several columns (Elkady and Lignos 2018b) and success by
the first and third authors in winning a recent blind analysis com-
petition (ATC 2018). The models are comprised of quadrilateral
reduced integration shell elements (S4R) with a mesh size of ap-
proximately 25 mm. Residual stresses are considered in the model
based on the Young (1972) stress distribution because de Castro e
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Table 5. Original Voce-Chaboche model parameters for the case study material sets

Material E (GPa) 40 (MPa) 0., (MPa) b C, (MPa) - C, (MPa) 7
$355J2 HEB500 flange 191.85 245.50 119.77 8.67 14,019.86 205.39 1,247.05 445
$35512 HEB500 web 198.39 251.74 118.43 10.85 17.876.51 236.30 2,582.61 24.01
$355J2+N 25 mm plate 191.52 265.29 104.44 11.63 12,997.99 99.52 1,560.41 7.35

Sousa and Lignos (2017) suggests that this distribution is adequate
for HEB500 cross-sections.

Two material data sets are chosen to be consistent with the
HEBS500 cross-section. Parameters constituting Material set 1
are chosen as the S355J2+N 25 mm plate data set because the plate
thickness best matches the flange and web thickness of the
HEBS500 section given the existing data. Material set 2 is based
on material tests conducted as a part of the present study using
12- and 20-mm diameter round bar coupons (with a diameter in
the reduced section of 6 and 10 mm, respectively) from the web
and flange of an HEB500. A second set of parameters is used
to establish confidence that the results of this case study hold
for multiple data sets. Material parameters for the Voce-Chaboche
model are provided in Table 5 using the procedure by de Castro e
Sousa et al. (2020), and parameters for the UVC model are taken
from Table 2.

Loading and boundary conditions on the column models are
shown in Fig. 10(a). Rigid-body constraints are applied to the no-
des at the top and base of the CFE models to avoid stress concen-
trations in these regions; all loads and boundary conditions are then
applied at the centroid of the cross-section. Fixed-end boundary
conditions are assumed, and the same constant compressive axial
load is applied to all models based on 20% of the axial load at first
yield, Aoy, where A is the nominal area, and Ty0 is taken as the
value from the updated material model for the S355J24+N 25 mm
plate data set from Table 2. The symmetric cyclic lateral displace-
ment history from Chapter K of AISC (2016) is applied at the col-
umn top after the application of the gravity load, as depicted in
Fig. 10(a). Default convergence criteria in Abaqus v6.14 is used
with automatic time-stepping; however, outputs are generated at
the exact same analysis times to make the analyses as comparable
as possible.

Axial load
Displacement
control Fix: u,
r.\" rl" r:
’ L]
e Fix: uy, uy, u.
A Ty, 'y, 1V
X b% v
(a) (b) (c) (d)

Fig. 10. Continuum finite-element model and elastic buckling modes
for the HEB500 column case study: (a) CFE model; (b) Mode 1;
(c) Mode 5; and (d) Mode 6.
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Geometric Imperfections

Geometric imperfections are included to induce LTB and local
buckling by scaling and superimposing relevant elastic buckling
modes (Elkady and Lignos 2018b). These geometric imperfections
are determined by first applying the axial load and then applying a
lateral force and conducting an elastic eigenvalue buckling analysis
in Abaqus. Modes 1 and 2 correspond to LTB, and Modes 5 and 6
corresponding to local buckling are visually selected. Modes 1, 5,
and 6 are shown in Fig. 10—note that Mode 2 is simply the inverse
of Mode 1. Both Modes 1 and 2 are applied independently to the
model to consider the random nature of imperfections that could
induce LTB in either of the two directions.

For the purpose of this parametric study, geometric imperfec-
tions with amplitudes below the manufacturing limits, e.g., CEN
(1993), are applied to the column models. The imperfection ampli-
tudes are based on the mean and standard deviation of previously
measured imperfections. Five scale factors are considered for both
the LTB and local buckling modes, a,,, a1, and a,,;.,/», where a is
the scale factor, and subscripts 1 and o denote the mean standard
deviation of the measurements, respectively. The derivation of the
imperfection scale factors is now discussed.

Twist measurements from 10 full-scale steel columns featuring
cross-sections similar to the present study are used to deduce the
LTB imperfections scale factors (Elkady 2016; Elkady and Lignos
2018a). LTB imperfection scale factors are related to the measured
angles of twist through Eq. (39)

aLTB _ eapplied (39)
Oref

where a'™ = scale factor applied to Modes 1 or 2; Oapplica =
intended rotation at column midheight based on the measured im-
perfections; and 6, = estimate of the midheight rotation for Modes
1 and 2 from the buckling analysis. Note that Elkady (2016) re-
corded the initial rotational imperfection at the column top; there-
fore, the values at midheight are assumed to be one-half of the
values reported at the top. The reference twist angle corresponding
to the imperfections in Modes 1 and 2 are deduced using Eq. (40)
based on the rotation of the web about its centerline

2
Orer = arcsin{ - } = 0.004 rad (40)

where u,, = displacement of the web from the HEB500 model at
midheight due to buckling Mode 1. Eq. (40) is evaluated, consid-
ering that u,, ~ 1.0 mm due to the normalization of buckling
modes in Abaqus. The mean twist for the LTB imperfection is cal-
culated as 0.006 rad, and the standard deviation is 0.005 rad
(Elkady 2016). The scale factors for the LTB imperfections based
on the mean and standard deviation using Eq. (39) are provided in
Table 6.

Measurements from six European steel wide-flange sections are
used to deduce the local imperfection scale factors. Local imper-
fection scale factors are related to the measured flange and web
imperfections through Eq. (41)
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Table 6. Impertection scale factors for lateral-torsional and local buckling
modes

Basis of imperfection scale factor

Imperfection mode u—o p—o/2 u  u+o/2 p+o
Lateral-torsional 0.24 0.83 1.40 2.00 2.59
buckling modes (1, 2), a-™8

Local buckling 0.53 0.87 1.20 1.54 1.87

modes (5, 6), a'*

Note: ;= mean of measurements; and o = standard deviation of
measurements.

A
a* = _X’P‘fd (41)
TC!

where @' = scale factor applied to Modes 5 and 6; Ayppliecd =
intended local imperfection amplitude; and A, = 1.0 mm = maxi-
mum nodal displacement from Modes 5 and 6. Hartloper and
Lignos (2019) report the mean measured web imperfections ampli-
tude as /300 and the standard deviation as //1,017. From the
same study, the mean measured flange imperfection amplitude is
b/250, and the standard deviation is b/466. The mean measured
values are consistent with European manufacturing limits (CEN
1993) as well as those proposed by Elkady and Lignos (2018b).
The scale factors for the local imperfections based on the mean
and standard deviation using Eq. (41) are provided in Table 6.

Parametric Study and Results

Both the material properties and geometric imperfections are varied
to investigate the consistency of the divergence in buckling modes.
With this parametric study, we vary the geometric imperfections
within expected ranges for common steel profiles. This approach
intends to show that if, for a range of variations in the geometric
imperfections, there is a consistent divergence in the column behav-
ior for different material models, then it can be reasonably con-
cluded that the accuracy of the material model is the principal
cause of the divergence. A total of 15 comparisons are conducted
for each material set in which the geometric imperfection scale
factors are varied equally for the columns using both the Voce-
Chaboche and UVC models. Parameters from two material sets
are chosen for a total of 30 comparisons. The parametric study fol-
lows three steps for Material set 1 (S355J2+N, 25 mm plate). First,
five comparisons are made using the imperfection scale factors
given in Table 6, varying the LTB imperfection Mode 1 with con-
stant local imperfection geometry. Second, five comparisons are
made in a similar fashion but varying LTB Mode 2 with constant
local imperfection geometry. Third, five comparisons are made
varying the local imperfection scale factors for Modes 5 and 6
based on Table 6, with constant LTB imperfection Mode 1 geom-
etry. The same three steps are then carried out using Material set 2
(S355J2 HEBS500 flange and web).

Results from the parametric study indicate that while the pre-
peak responses of the simulations are similar, there is a consistent
divergence in the simulated buckling modes between the two col-
umns that use different material representations. A comparison of
the column base moment—chord rotation for Material set 2, and all
imperfections at the mean amplitude are shown in Fig. 11(a). Typical
deformed shapes observed from the analyses using the Voce-
Chaboche and UVC material models are shown in Figs. 11(b and c),
respectively. The similarity in the prepeak responses between the
two models may seem counterintuitive as the largest difference
in material appears in the initial yield stress. However, the initial
hardening of the Voce-Chaboche model is increased to compensate
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Fig. 11. Column base moment—chord rotation and column model de-
formation modes (yielding shown in light gray) at the first excursion to
—4% chord rotation: (a) moment-rotation, Material set 1, mean imper-
fection amplitudes; (b) VC model; and (c) UVC model.

for its lower initial yield stress, so the overall prepeak component
response is relatively similar. Significant differences in the compo-
nent behavior only arise in this case study after strength deteriora-
tion due to buckling in the component has occurred.

Divergence in the component simulations arises primarily due to
the difference in initial yield stress between the two material models.
Observe in Figs. 11(b and c) that the extent of yielding along the
column length from the ends, or plastic hinge length, is around three
times greater when the Voce-Chaboche material model is used.
Yielding is shown visually in these figures as the light gray regions.
At the first excursion to —4% chord rotation, the spread of plasticity
is almost up to 80% of the column half-length for the Voce-
Chaboche model, whereas this value is only around 30% for the
UVC model. The long plastic hinge lengths in the model with the
Voce-Chaboche material significantly reduce the torsional stiffness
of the column. In turn, this allows for the initiation of lateral-
torsional buckling. Similar observations are made by Elkady and
Lignos (2018a) with respect to full-scale wide-flange column tests.

The increased initial yield stress of the UVC model does not
allow for such a long plastic hinge length to form. Lateral-torsional
buckling does not occur in this case, and the deterioration in
strength and stiffness is due to local buckling followed by column
twisting. This case study shows that columns with relatively high
member slenderness ratios (e.g., L, /i, > 90) can be sensitive to the
difference in initial yield stress because these members are prone to
experiencing coupled local and lateral-torsional buckling. Such
components are, therefore, sensitive to the choice of material model
parameters.

Consistency in the difference between simulated component re-
sponses is evaluated to assess if the aforementioned sensitivity
holds for different material parameters and imperfection geom-
etries. Results from the parametric study are compiled in Table 7
in terms of an error metric defined by Eq. (42) that measures the
relative difference in a moment between the two analyses over the
common load history

M —
E, = [Myve = Mycl| UHVAC4 chI‘\l vell 100 (42)

where M = discrete vector of the column base moment up to the
last common time increment between the two analyses; and the
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Table 7. Summary of the error metric from the parametric case study

Error metric (%), Material set 1

Error metric (%), Material set 2

VM scale VM1, CM56 VM2, CM56 CMI1,VM56 VM1, CM56 VM2, CM56 CM1, VM56
ph—o 17.5 17.6 19.8 213 226 155
pn—c/2 18.7 18.8 19.6 245 226 24.2
L 19.0 18.9 19.0 23.6 253 23.6
L+ o2 19.3 19.2 17.6 228 21.0 224
p+o 19.3 19.3 6.7 21.1 20.7 16.3

Note: VM = varying mode; CM = constant mode(s), all the constant modes at mean scale factor; ;= mean of measurements; and o = standard deviation of

measurements.

subscripts denote the analyses using either the Voce-Chaboche (VC)
or UVC material model. In Table 7, the columns with VM indicate
the imperfection modes with varied amplitude (e.g., VM1 means that
the amplitude of Mode 1 is varied, and VM56 means that the am-
plitudes of Modes 5 and 6 are varied), and the columns with CM
indicate the imperfection modes with a constant mean amplitude.

Results from the parametric study in Table 7 suggest that the
difference in the base moment over the load history is up to about
20%. Values in this table of around 15%-20% are the analyses
where different buckling modes are observed, while the one value
of 6.7% (Material set 1, ;1 + o local buckling imperfection ampli-
tude) is a case in which the same buckling modes are observed. In
this specific case, the response is similar because there is a rela-
tively large local imperfection applied that leads to primarily local
buckling, even for the column model with the Voce-Chaboche
material model. The majority of error metrics in Table 7 falling into
the 15%—-20% range, in conjunction with the observed shift in in-
stability models, underscores the high sensitivity of component
behavior to minor differences in simulated material response. These
results support that a divergence in buckling modes is the most
probable outcome when the two different material models are em-
ployed, given the assumed member geometry, material properties,
and imperfections in this study.

Discussion of Results, Limitations, and Future Work

Through this paper, the proposed material model has been cali-
brated using multiple tests for each steel material in an effort to
represent better the material’s response to random strain histories,
such as those expected in steel components during earthquake load-
ing. Using this method, the proposed material model has been
shown to improve the predicted stress-strain behavior over the clas-
sic Voce-Chaboche model for all the data sets considered. This
comes as a result of the model’s ability to reduce the yield surface
while maintaining nonsoftening behavior initially. The same com-
parisons cannot yet be made with other structural steel material
models referenced in this paper because the authors consider that
meaningful comparisons can only be made when evaluating the
same set of data and error measures.

Through an investigation of the component-level sensitivity to
material model assumptions, this paper shows that seemingly
minute differences in the material-level response can be magnified
in the component-level response. This difference is mainly attrib-
uted to the difference in the initial yield stress parameter between
the classic Voce-Chaboche and proposed models. The case study in
this paper demonstrates that this difference in the initial yield stress
may have a significant impact on simulated column instability
modes. This result is notable because, to the authors’ knowledge,
such a result regarding CFE component-level sensitivity has not yet
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been investigated for the structural steel constitutive models refer-
enced in this paper.

The preceding considerations notwithstanding, one limitation
of this work is that no rigorous assertation can presently be
made on whether the modifications to the Voce-Chaboche material
model result in more accurate representations of component level
responses compared to test data. Although assessing the relative
merits of different modeling approaches in component level experi-
ments requires test data where the material properties are fully
known (i.e., several uniaxial or multiaxial coupons have been tested
with different loading protocols for both the flange and web), the
geometric imperfections in the member have been measured, and
the residual stresses in the section are known. To the authors’
knowledge, to date, such data do not exist for any full-scale steel
column test. Conducting experiments in the future that include the
data noted previously is considered essential to assess and validate
the material level sensitivity that has been postulated in this paper.
The component-level sensitivity uncovered in this study is very
likely to depend on the component under consideration; therefore,
this matter should also be investigated for other steel components.
Finally, the proposed model does not consider time-dependent ef-
fects (i.e., strain rate effects and strain aging). These effects, includ-
ing their impact on prepeak and postpeak component behavior,
should be addressed in the future.

Conclusions

Prior work (de Castro e Sousa et al. 2020) shows that the calibration
of the Voce-Chaboche material model parameters consistently
underestimate the initial yield stress in mild steels when the cali-
bration method is based on minimizing the difference in strain
energy across multiple tests that include strain demands deemed
representative of those expected in steel components subjected
to earthquake loading. This issue can be attributed to the permanent
decrease in the yield stress because of the discontinuous yielding
phenomenon present in these metals. In this paper, we propose an

UVC nonlinear isotropic/kinematic hardening material model as

well as its calibration methodology. The main outcomes are sum-

marized as follows:

* Constraints on the parameters of the UVC model are essential to
ensure a hardening response consistent with the behavior of
mild steels. Two constraints are formulated to ensure nonsoften-
ing behavior regardless of the steel material.

e The material model implementation is validated in commercial
and open-source finite-element analysis programs such as Aba-
qus (as UMATSs) and OpenSees (as a UniaxialMaterial and
NDMaterials) for uniaxial, plane-stress, and multiaxial stress
states. The code is made publicly available (Hartloper 2019).

» Parameters for the UVC material model are provided for a data-
base of nine structural steels used in North America, Japan, and
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Europe. The initial yield stress is increased by 17% using the
UVC model over the Voce-Chaboche model. A 19% relative
improvement in the overall material model accuracy is found
when compared to the Voce-Chaboche model. The full calibra-
tion procedure of the UVC model is made available in the
open-source Python package RESSPyLab (de Castro e Sousa
et al. 2019).

e At least two backstresses are necessary for the UVC model to
represent the behavior of the investigated steel materials accu-
rately. One backstress leads to an underfitting of the kinematic
hardening component.

* Results from the conducted parametric study suggest that the
simulated geometric instabilities in steel wide-flange columns
that arise under multiaxis loading are sensitive to the material
model and input parameters for the studied column geometry.

* Findings from the case study should be supported by full-scale
tests in which the imperfections, residual stresses within the
cross-section, and material characteristics are fully quantified
beforehand to evaluate the effect of material initial conditions
reliably. Furthermore, effects that influence the hardening mech-
anisms and spread of plasticity within the plastic hinge length of
the columns, such as the rate of the applied loading, should also
be explored in the future by means of large-scale physical
testing.
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Notation

The following symbols are used in this paper:
a =isotropic hardening rate parameter for yield surface
reduction;

aE:; = buckling mode scale factor for geometric imperfections;
b =isotropic hardening rate parameter for cyclic hardening;
C=x1® 1+ 2ul,,,, fourth-order tensor of elastic moduli;
C¢? = fourth-order tensor of elastoplastic moduli;

C\ =kinematic hardening magnitude for k’th backstress;
D, =isotropic hardening magnitude for yield surface
reduction;
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E,, = case study error metric;
e; = first-order standard basis tensor;
e, =update to kinematic hardening;
f =von Mises yield function;
f(x) =objective function in minimization problem;
g(x) = vector of constraint functions;
g(AMN) =equation for consistency condition in radial return
mapping;
J, g1, g» = constraints to ensure nonsoftening;
H'’ =kinematic hardening modulus;
I=1/2(646; 4 6401)e; ® e; ® e, ® e, fourth-order
sym. identity tensor;
T4y =1—1/31 ® 1, fourth-order deviatoric identify tensor;
K' =isotropic hardening modulus;
M = discrete base-moment history vector;
N7 =number of load protocols used in calibration;
n = unit vector-field normal to yield surface;
Q. =isotropic hardening magnitude for cyclic hardening;
T =end of time interval;
t = time variable;
x = parameter vector for proposed material model
(uniaxial);
a = second-order total backstress tensor;
7« = kinematic hardening rate parameter for k’th backstress;
A\ =increment in plastic multiplier;
0;; = Kronecker delta;
€, = tolerance in optimization problem;
€ = second-order strain tensor;
€¢ = second-order elastic strain tensor;
&P = second-order plastic strain tensor;
¢, =Luders’ strain;
b, = equivalent plastic strain;
¢* =accumulated absolute strain;
+ = bulk modulus;
) =consistency parameter (time derivative of plastic
multiplier);
1= shear modulus;
& = second-order relative stress tensor;
p =hardening metrics;
o = second-order stress tensor;
oy = yield stress;
oy = initial yield stress;
{=normalized calibration error metric;
1=6;e; ® e;, second-order identity tensor;
(-) =time derivative; and
() /o = mean/standard deviation for imperfections.
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